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Abstract 

By using some variational principles and the Ljustemik-Schnirelmann critical point theory, 
we extend some previous results dealing with the existence and multiplicity of geodesics having 
prescribed energy joining a point with a line on static Lorentzian manifolds with convex boundary. 
Our techniques work also in the case of timelike and spacelike geodesics on manifolds with boundary 
and for a physically relevant class of spacetimes with non-smooth boundary. 0 2000 Elsevier Science 
B.V. All rights reserved. 

Subj. Class.: Differential geometry; General relativity 
1991 MSC: 58E05; 58ElO; 53C50 
Keywords: Geodesics; Static Lorentzian manifolds 

1. Introduction 

In this paper we study the existence and multiplicity of geodesics having a prescribed pa- 
rameterization proportional to the arc length, joining a point with a line on a static Lorentzian 

manifold with convex boundary. We recall that a Lorentzian manifold (M, (. , .) (~1) is a 
finite dimensional manifold M with a smooth, symmetric tensor field (. , .)(L, which is a 
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non-degenerate scalar product with index one on each T,M, for any z E M, (see e.g. [ 1 l] 
for more details). A geodesic is a curve y :]a, b[+ M satisfying 

D,p = 0, 

where D, denotes the covariant derivative induced by the Levi-Civita connection on M. It 
is easy to see that, if y :]a, b[-+ M is a geodesic, there exists a constant E = E(y) E R’ 
independent of s such that for any s ~]a, b[ 

E = &(3(s), P(S))(L). 

In the sequel we shall call the constant E energy. We point out that such a name is not re- 
lated to its physical meaning. A geodesic y is said timelike (respectively lightlike, spacelike) 
if E is negative (respectively null, positive). Four-dimensional Lorentzian manifolds are the 
mathematical models of relativistic spacetimes. In General Relativity, lightlike geodesics 
represent light rays and timelike geodesics the world-lines of free falling particles. 

Here we shall consider the class of static Lorentzian manifolds. 

Definition 1.1. Let (MO, (., .)) be a connected Riemannian manifold and set M = MO x 
R. A (standard) static Lorentzian metric (. , .) CL,) on M is defined in the following way: for 
any z = (x, t) E M and for any 5‘ = (c, t), (“ = (c’, t’) E TzM = TxMo x Iw 

(53 5’)(L) = (63 (7 - B(x>tr’, (1.1) 

where B : MO + R is a smooth positive function. The couple (M, (. , a) CL)) is said static 
Lorentzian manifold. 

Moreover we shall assume that M = MO x R is a static Lorentzian manifold with convex 
boundary. 

Definition 1.2. Let M be an open subset of a manifold 5 with topological boundary i3M. 
We say that M has convex boundary if for any geodesic y : [a, b] + M U aM such that 

v(a), y(b) E M 

~(]a, bl) c M. (1.2) 

If aM is smooth, using the distance from the boundary, it can be proved that there exists a 
smooth function # : 2 --+ R such that 

M = {z E i+D(z) > O), 
aM = {z E sip(z) = O}, (1.3) 
V@(z) # 0, for any z E aM. 

Moreover it is easy to prove that if aM is smooth and convex 

&(z)]t, t1 50 (1.4) 

for any z, E aM and [ E T,aM, where H@(z) denotes the Hessian of @ at the point z. 
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For the proof of our main result we shall use the following definition. 

295 

Definition 1.3. An open subset M of a manifold G with topological boundary 8 M is said 
to have time-convex (respectively light-convex, space-convex) boundary if (1.2) holds for 
any timelike (respectively lightlike, spacelike) geodesic. 

Note that if 3 M is smooth and for instance time-convex, then (1.4) holds for any z E a M 
and for any timelike vector 5‘ E TZ i3 M . 

On a static Lorentzian manifold with boundary M = MO x [w we consider a point 
p = (x0,0) E M and a line y(s) = (XI, s) c M. Any curve z : [O, a] -+ M, z = (x. t) 
joining p and y satisfies x(0) = xc, t(0) = 0, x(a) = XI. We shall denote by r,l.l,(~) the 
arrival time given by 

S,,,(Z) = t(a). 

Now set 

“=-I 
B’ 

where /3 is as in Definition 1.1. The following theorem concerns the existence of geodesics 
of prescribed energy joining p and y 

Theorem 1.4. Let M = MO x [w be a static Lorentzian manifold with smooth time-convex 
boundary such that MO is not contractible in itself and MO U aMo is complete. Assume 
that there exist L, n > 0 such that 

t7 5 B(x) 5 L VXEMO (1.5) 

and let p = (x0,0) E M and v(s) = (xl, s) E M, s E R be such that p $ y(R). Thenfor 
any E E] sup V, 0[ there exists a sequence (Zm)mEN of geodesics having energy E joining 
p and y such that 

,,:y, qLy(zm) = +m. (1.6) 

Remark 1.5. If we& E = 0 (respectively E > 0) the previous theorem holds assuming 
that M has light-convex (respectively space-convex) boundary. Note thatfor the existence 
of a sequence of geodesics of prescribed energy joining a point with a line we need only 
the first inequality in (1.5); nevertheless, to avoid to state the result only for spacelike 
geodesics, we also assume that B is bounded from above (this assumption is satisfied by 
relevant physical examples of spacetimes which we shall analyze later). 

Now we consider the case when M has a topological boundary which is not smooth and 
/I goes to 0 on aMo. This is the case of some physically relevant spacetimes, which will 
be examined in the sequel, such as the Schwarzschild and Reissner-Nordstrom ones, when 
the metric is not defined on aMo. In this situation we can reinforce the assumptions on 
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the convexity of the boundary to control its non-smoothness. More precisely, we recall the 
following definition introduced in [3]. 

Definition 1.6. Let M be an open subset of a manifold E = & x R, and aM its 
topological boundary. M is said to be a static Lorentzian manifold with non-smooth convex 
boundary, if 

(i) M = MO x !R is a static Lorentzian manifold; 
(ii) sup #I(x) < +oo; 

XEMQ 
(iii) there exists @ E C’(M, 10, +oo[), such that 

lim @(X,f) =o 
(n,r)+z~8M 
@(x, t> = @(x7 0) = 4(x>, V(x, t) E M 

(iv) for every n > 0, the set {x E MO I@(x) 2 q} is complete with respect to the Riemannian 
metric on MO; 

(v) there exist positive constants N, M, v and S, such that the function @ of (iii) satisfies 
the following properties: 

v i FL@(Z), VL@(Z))(L) i N 
&J(Z)]<, Cl i Ml(5‘, !~)w)l@‘(z) 

(1.7) 

for any z E M such that Q(z) 5 S and for any 5 E T,M, where VL@ and HQ denote 
the Lorentzian gradient and the Lorentzian Hessian of @, respectively. 

When M satisfies Definition 1.6 the following theorem holds. 

Theorem 1.7. Let M = MO x R be a static Lorentzian manifold with non-smooth convex 
boundary, such that MO is not contractible. Let p and y be as in Theorem 1.4. Then for 
any E > sup V there exists a sequence of geodesics having energy E joining p and y. 

The proofs of the above theorems will be carried out using some variational principles 
which allow to find geodesics with prescribed energy as critical points of suitable func- 
tionals. Indeed Lorentzian geodesics joining a point with a line on a static manifold can 
be found as solutions with fixed energy of a suitable Lagrangian system on MO whose 
potential depends on #I. Such solutions are critical points of a functional introduced in [ 141 
for the study of brake orbits for a class of Hamiltonian systems. It is essentially obtained by 
a modified version of the classical principle of least-action. As MO may be non-compact 
and it has a boundary, a penalization argument is needed. The penalizing term is chosen 
in such a way that all the critical points are solutions with energy E of some perturbed 
Lagrangian systems. 

This kind of problem has been already studied in [4,6,7] for light rays and by using 
variational techniques different from ours. Strictly “negative energies” have been studied 
in [8] on stably causal manifolds without boundary. We point out that the presence of the 
boundary makes the problem more difficult, because the intrinsic approach used in [8] does 
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not allow to handle it by the usual penalization techniques. Here we show that, at least in the 
static case, such techniques still work. Moreover, unlike [7], they can be applied to the study 
of geodesics on manifolds whose boundaries can be non-smooth and they work also in the 
spacelike case where the approach of [7,8] cannot be repeated. Our results have a physical 
interpretation when E 5 0. Indeed, when E = 0, the point p can represent a source of 
light and y the world-line of an observer. In this case the lightlike geodesics joining p and 
y are the images of the source seen by the observer. Due to the bending of light by gravity 
in some cases multiple images appear. When E -C 0, p represents a free falling massive 
particle and the geodesics with fixed E joining p and y its trajectories under the action of 
a gravitational field. Finally, for a physical interpretation of (1.6) see e.g. [9]. 

Physical examples of static Lorentzian manifolds with convex boundary are Schwarzs- 
child and Reissner-Nordstrom spacetimes. Schwarzschild spacetime represents the empty 
spacetime outside a non-rotating, spherically symmetric massive body of radius r *. Using 
the spherical coordinates r ~10, +co[, 8 ~10, n [, cp ~]0,21r [, the metric is given by 

&* = dr2 
B(r) 

+ r* dG’* - B(r) dt*, (1.8) 

where da2 = sin2 6 dq2 f de* is the standard metric of the unit 2-sphere S* in Iw3, m > 0 
is the mass of the body and 

B(r) = 1 - F. 

Then, (1.8) is defined on MO x R where 

MI) = ((r, 8, ~0) E R31r > 2mJ. 

Taking into account the radius of the body, there are two possible cases: 

(9 r * > 2m: in this case (1.8) is well defined outside the body. Indeed, if we set 

(ii) 

MT, = ((r, 0, q) E R31r > r*), (1.9) 

(1.8) is defined on M); x R, which is a smooth submanifold of MO x R. This is the 
case when the body represents a star; 
r* < 2m: the metric is singular on a&In so that it is well defined on MO x R. This is 
the case of a black hole: the mass of the body is so concentrate that a massive object 
which reaches the singularity cannot avoid its gravitational attraction. 

In the case (i) MT, x IF4 has time-convex and light-convex boundary if r * ??]2m ,3m [, (see 
[9]). Also in the case (ii), MO x R has convex boundary according to Definition 1.6, (see 
[3]). Here we only recall that in (i) the function 0 is given by 

Q(r) = r - r* 

while in (ii) 

Q(r) = JBO. 

Note that M* is non-contractible in itself since it is homotopically equivalent to a sphere. 
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The Reissner-Nordstrom metric is the solution of the Einstein equation corresponding to 
the exterior gravitational field produced by a non-rotating spherically symmetric massive 
body electrically charged. In polar coordinates it is given by (1.8) with 

b(r) = 1 - ? + $_ 

where e E R is the electric charge of the body. Note that when e = 0 we get the 
Schwarzschild metric. If m2 > e2 the equation ,!I = 0 has two positive solutions 

Then the metric is well defined on Ma x R where 

MO = I@, 8, YJ) E R31r =- r+] 

If r* > r+, defining MT, as in (1.9), it has been proved (see [9]) that MT, x R is a 
smooth open submanifold of MO x I%! having time-convex and light-convex boundary if 
r* ~]r+, 1/2(3m + J9m2 - 8e2)[. If r* < r+, it has been proved in [3] that MO x [w has 
convex boundary, according to Definition 1.6, provided that m2 > (9/5)e2. 

Theorems 1.4 and 1.7 can be applied to the above cases to get existence and multiplicity 
of geodesics joining any point p E M and any line y with prescribed energy E, for any 
E E] - 1, 0] when r* > r+ is sufficiently small and for any E > - 1 when r* -C r+ and 
m2 > (9/5)e2. 

2. The variational framework and the penalization argument 

In this section we shall state two variational principles which reduce the search of the 
geodesics having energy E joining p and y to that of the critical points of a suitable 
functional. Before presenting them, we recall that, by the well-known Nash embedding 
Theorem (see [lo]), the Riemannian manifold MO is isometric to a submanifold of RN, 
with N sufficiently large, equipped with the metric induced by the Euclidean metric in RN. 
So in the sequel we shall assume that MO is a submanifold of RN and that (., .) is the 
Euclidean metric. Following [ 141, we shall consider the functional 

f(x) = ;l’(i.i)d$E - V(x))ds 

forE E R,n E 52’(xo,x~,Mo) where 

(2.1) 

52’ = sZ’(xo,xt, MO) = {x E dg2([0, 11, Mo)lx(0) = x0, x(1) = xl) 

and 

ff1*2([0, 11, MO) = lx E H',2([0, 11, R'?Ix([O, 11) c Mol. 
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It is well known that D’ is a Hilbert submanifold of H’,‘([O, 11, MO) whose tangent space 
at x E 52 ’ is given by 

73’ = I< E H’.2(]0, 11, TMo)It(s) E Gc,,)Mo t(O) = 0 = t(1)). 

The following proposition whose proof can be found in [ 1,121, allows the geodesics joining 
p and y to be found by studying the solutions with prescribed energy of a Lagrangian 
system on MO. This approach is different from the one previously used for this kind of 
problem (see the variational principle in [2]). 

Proposition 2.1. Fix E E IR and let x : [0, a] + MO be a solution of 

D,x = -VV(x), 
x(0) = x0, x(a) = x1, 
;(i, i) + V(x) = E, 

(2.2) 

where V = - l/B. Then, set z = (x, t), with 

s s 

I(S) = Jz 
1 

~ dt, 
0 B@(r)) 

(2.3) 

z is a geodesic of energy E joining p and y. Vice-versa, consider a geodesic z = (x, t) of 
energy E joining p and y and such that p(x)i = 2/2. Then x is a solution of (2.2). 

Now we can state the following variational principle for (2.2). For the proof see [ 1,141. 

Proposition 2.2. Let V E C2(Mo, R) boundedfrom above and E E R, E > sup V. 
(i) Let x E a’ be a critical point off with f ( ) x > 0. Then y(s) = x(os), s E [O. h], 

where 

wz(x) = .&?F - V(x))ds 

i&(-i-,k)ds ’ 
0.4) 

is a solution of (2.2). 
(ii) Let y be a solution of (2.2). Then x(s) = y(as), s E [0, l] is a critical point off on 

52 ’ with f(x) > 0. 

Hence, in order to prove Theorems 1.4 and 1.7, we have to look for the critical points of the 
functional f. Let us recall the well-known Palais-Smale condition. 

Definition 2.3. Let (X, h) be a Riemannian manifold modelled on a Hilbert space and 
let F E C’(X, R). We say that F satisfies the Palais-Smale condition if every sequence 
(x,,)~~N such that 

(F(x,))~~,,, is bounded (2.5) 

and 

llVF(x,)ll -+ 0, as m ---+ +cc (2.6) 



300 R. Bartolo, A. Geminario/Journal of Geometry and Physics 32 (2000) 293-310 

contains a converging subsequence, where V F (x) denotes the gradient of F at the point x 
with respect to the metric h and )] . 11 is the norm on the tangent bundle induced by h. A 
sequence satisfying (2.5) and (2.6) is said a Falais-Smale sequence. 

Since we are considering non-complete manifolds, the functional (2.1) does not satisfy the 
Palais-Smale condition. To avoid this problem, we need to penalize f. From now on, we 
shall assume that M is a static Lorentzian manifold with smooth time-convex boundary. 
As ~Mo is smooth, there exists a smooth function 4 : 50 + R satisfying 

MO = Ix E ~ol#(x) > 01, 
aMo = (x E &iolqW = 01, 
V@(x) # 09 for any x E aMo. 

Setforanyz = (x,t) EM 

Q(z) = @(X> t) = 4(x), 

and notice that 

(2.7) 

VL@(Z) = (v+(x), O), 

where Vr. Q,(z) denotes the Lorentzian gradient of 0. Then @ satisfies (1.3). For the sake 
of simplicity in the sequel we shall denote with the same symbol 4 and @. 

For any E ~10, 11, we consider a positive increasing C2-function $<: R ---_, R such that: 

$6(r) = 0, r i ;, 
l& $e(r) = +oo, (2.8) 

$:(s) > 0, ifs > l/c, 9%(s) i Ilr8(s), f or any s, E 5 E’ and $< (s) 1 a,s - b, for some 
positive numbers a, and b,. Let for any E ~10, 11, x E a ’ 

fc(x> = f(x) + ; i’b.(s)> i.(s)) ds I’ $6 

1 ’ 
=- 2 o (k(s), k(s)) ds 

J 
E - V(x(s)) + @e 

Remark 2.4. We point out that the previous variational principles still hold, with suitable 
variants, for the above penalized jimctionals. In particulal; Proposition 2.2 holds for V 
replaced by 

Then, if x is a critical point off<, dejining y as in Proposition 2.2 with w given by (2.4) 
(where V = V,) we have for any s E [0, l] 

E = ;(?;(s,, Y(s)) + V(Y(S)) - I++< c&d. (2.10) 
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Lemma 2.5. Let E > sup V and@ E ~]0,1]. Let (x,),~N be a sequence in 0’ and K 
be a constant such that 

.fc(xm) i K, for any m E N, (2.11) 

inf(@(x,(s>)]s E [O, 11, m E N} > 0. (2.12) 

Proof. By (2.11) it easily follows that the sequence (x,),~N is bounded in L*. Moreover, 
(2.11) and the Holder inequality imply that 

Then (2.12) is a consequence of the following lemma, see e.g. [9]. 0 

Lemma 2.6. Let (Xm)mEN be a sequence in R1 such that 

s 

I 
sup hn, a,) ds < foe 
meN 0 

and let (s,)~~N in [0, l] be u sequence such that 

m~~~wtz(s,)) = 0. 

Then 

(2.13) 

(2.14) 

(2.15) 

Proposition 2.7. Assume that E > sup V. Then, 
(i) for any E ~10, l] andfor any c E Iw the sublevel 

f:’ = Ix E fillf&) 5 c] 

is a complete metric subspace of D ’ ; 
(ii) for any E ~10, 11, f6 satisjes the Palais-Smale condition. 

Proof. Let (x,),e~ be a Cauchy sequence in f,‘, then it is a Cauchy sequence also in 
ZY’.*([O, 11, RN) and it converges to a curve x in H ‘**([O, I], RN). Since this convergence 
is also uniform, by Lemma 2.5 it results that x E Sz ’ and by the continuity of fC, we obtain 
the first part of the proposition. Now let (x,),~N be a Palais-Smale sequence; in particular 
it results that 

(l’(&,im)ds)mEN isbounded. (2.16) 

Then, up to a subsequence, we get the existence of ax E H’.*([O, 11, RN) such that 

x, + x weakly in H’,2([0, 11, RN). (2.17) 
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Arguing as in the first part of the proof, we get that x E S2 ‘. Using standard arguments, it 
can be proved that 

x, + X strongly in H1,2([0, 11, RN). 17 

Our next aim is to prove some a priori estimates on the critical points of the penalized 
functionals; in particular, we shall prove the following proposition. 

Proposition 2.8. Let (x~)~~Io, 11 be a family ofcurves of 52’ such thatfor any e ~10, 11, x6 
is a critical point of fC and let K E [w be a constant such that 

f<(x<) i K, Ve ~10, 11. (2.18) 

Then there exists an infmitesimal and decreasing sequence (em)mCN of numbers in IO, l] 
such that (x+,),~N strongly converges in H1,2([0, 11, RN) to a curve x E 52’ which is a 
critical point off. 

Remark 2.9. It is easy to see that if(.~)~~]~, 1) is a family of criticalpoints of ft such that 
(2.18) holds, there exists a positive real number L 1 such that 

FS;?, o’(. s 
x,,i,)ds = L1. (2.19) 

Moreover; for any E ~10, 11, ifx E 52 ’ is a critical point of ft, then it satisfies the following 
equation: 

A,(x)D,x + B,(x)VV(x) = -B,(x) V@(x), (2.20) 

where 

A<(x) = 
I 

B,(x) = ; 
s 

(i, k) ds. 
0 

According to Proposition 2.2, see also Remark 2.4, let us set 

A,(x) 
o&x) = -. 

B,(x) 

To prove Proposition 2.8 some lemmas are needed. 

Lemma 2.10. Let (x,),~Io,II be a family of curves of Q’ such thatfor any E ~10, 11, xc is 
a criticalpoint off<. Then, settingfor any E ~10, 11, s E [0, l/w,], z~(s) = (y<(s), t6(s)), 
where yt is given by Proposition 2.2 and 

J 
s 

t,(s) = 1/2 
1 

~ dr, 
0 B(y,(r)) 

for any s E [0, l/0+] it results 

(2.21) 

(2.22) 
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Proof. Observing that for any s E [O, 11 

;(i,(s), i<(S))(L) = $(j,(s), j<(S)) + V(Y,(S)) 

proof follows from Remark 2.4 and (2.10). 0 

Remark 2.11. Consider the Riemannian metric on M given by 

(t, OR = (6,t) +/%b2 

for any z = (x, t) E M and [ = (c, s) E TIM. As H@ is a bilinearform 

H#(z)K, 51 I c(Z)(cT t)R 

for some positive constant c(Z). 

Letx, E 52’ beacriticalpointof fc andletusset,foranyE ~10, 11,s E [0, 11: 

h,(s) = 2 43(&(s)) +: L’iA ) (2.23) 

see (2.20). The following estimate on the family (&)EE1o. t1 holds. 

Lemma 2.12. There exists EO ~10, l] such that the family of functions (h,)tE~(),E,,~ is 
bounded in Loo([O, 11, W). 

Proof. For any E > 0 we set g<(s) = 4(x,(s)), so g, is a C2-function on [0, 11. Let sc be 
a minimum point for g,. Since $< is convex, Q: is non-decreasing, so it results: 

for any s E [0, 11, hence it is enough to prove that (h, (.s~))~~Io. 11 is bounded and to study 
the case in which 

inf 4 (x, (se)) = 0. (2.24) 
CEIO. II 

Let z,(s) = (y6(s), &(.s)) s E [0, l/w,], as in Lemma 2.10. As y<(s) = x,(o,s), where 
wz(x,) = A,(x,)/B,(x,), t< = s,(l/w,), is a minimum point for h,(s) = $(zc(s)) = 
@(y,(s)) on [O, l/we]. Now let us set, for any E ~10, l] , s E [O, l/we]: 

It is easy to see that zr satisfies the equation 

D,it = -P~(s)~L~J(z<) 

and that & (s<) = p<(r<) for any 6 ~10, 11. Moreover by (2.24) 

(2.25) 

(2.26) 
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Differentiating h, twice, we get: 

0 I h:‘(q) = H&(tc))[i,(r,), i,(~>l - PE(G~E)(VL@(ZE(G)). VL~(~E(~~))~L)~ 
(2.27) 

By Remark 2.9, it easily follows that 

(IIY~~~~)~~~~,~~ is bounded. 

Now let for any E ~10, 11 

(2.28) 

L 
1 

Y,(S), ifsE O,- , 

j;,(s) = 
[ 1 @ 

1 1 
YE - 

( > 
= XI, ifsE --,KI , 

WC [ 1 we 

where K1 = SU~,~~~, r1 &. We claim that there exists a positive constant al independent of 

E such that 

H&(r,))[&(r<), i,(G)1 5 Qck(~~56)~ i,(G)h. (2.29) 

Indeed since 

(Y~)~~IO, 11 is bounded (2.30) 

in Loo([O, Kl], W), from Remark 2.11, (2.29) easily follows. Moreover, since 0 is a regular 
value for $, by (1.3) we get the existence of a positive constant a2 such that, for E sufficiently 
small, 

(V4(Y,(7,)), V$(Yc(G))) 2 a2. (2.31) 

By (2.27), (2.29) and (2.22) 

then, as jl is bounded from below, 

from which we get the proof. 0 

Remark 2.13. Under the assumptions of Lemma 2.12, it is easy to prove that 

Ebjy @c ($2(x,(s))) ds = O. 
Lemma 2.14. Let (x~)~~Io,II be a family of points of Sz’ such that for any c ~10, 11, x6 
is a critical point of fe and (2.18) holds. Then there exist an infinitesimal and decreasing 
sequence (E,),~N ofnumbersin]O, l] andacurvex E H1*2([0, 11, MoUaMo) such that 

(i) x(s) E MO U aMo. for any s E [0, 11; 



(ii) 
(iii) 
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b,,, )rn~N converges strongly to x in III’,~([O, 11, RN); 
there exists A. E L2([0, 11, I%), h(s) > 0 almost everywhere in [0, 11, h(s) = 0 if 
x(s) E MO, such thatfor any Jf E T,Q’(xo, XI, fro): 

(2.32) 

Proof. By Remark 2.9, there exists an infinitesimal and decreasing sequence (Cm)mER; of 
numbers in IO, l] and a curve x E H’s2([0, 11, RN) such that 

x6, -+ x weakly in H’.2([0, I], RN). (2.33) 

Since (x,,,)~~N converges to x also uniformly and MO U 8Mo is complete we have (i). 
The same arguments used to prove the strong convergence in Proposition 2.7, allow to get 
(ii). By Lemma 2.12, the sequence (&,,)mE~ is bounded, in particular, in L’([O, 11, [w), so 
there exists A E L2([0, 11, W) such that 

&, -+ A weakly in L2([0, 11, R) (2.34) 

and it results h non-negative almost everywhere. It is well known, see e.g. [9], that by (2.33), 
for any 6 E T,G!‘(xo, xl, Go), set for any m E N e,,,(s) = P(x,(s))[t], where, for any 
y E &, P(y) is the projection of RN on TV,&, it results that (cm)“&,! has a subsequence 
weakly convergent to t in iY’*2([0, I], RN). So, since for any m E N 

0 = f:,, (xc,,, ) k,,, 1 = A<, (xc,, 1 
s 

’ k,, 3 kc,,, ) ds - &m (x,,n ) ’ WV (xc,,, 1, L, ) ds 
0 s 0 

s 

1 

-Benz (XEm ) h,,,(s)(VW,,), &m) ds, (2.35) 
0 

taking the limit, we get (iii). 0 

Now let 

H2,2([0, 11, rWN) = (x E H’.2([0, 11, RN)Jf is absolutely continuous, 

x E L2([0, 11, RN>], 

andletH2*2([0, 11, &)bethesubsetofH2,2([0, I], OBN)ofthecurvessuchthatx([O, 11) C 
GO. Integrating by parts (iii) of Lemma 2.14 as 6 E TX 0 ’ (x0, XI, GO) is arbitrary, it results 
that x E H2g2([0, 11, Go) is a weak solution of the equation 

s 

1 I 
(a, x) dsVV(x) 

0 
(E - V(x)) dsD,f + ; 

s 0 

s 

I 
= -k(s) (i, i) dsV&(x). 

0 
(2.36) 
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Lemma 2.15. Let n as in Lemma 2.14. Let so E [0, l] such that x(sg) E MO. Then there 
exists a closed neighborhood J of SO such that h(s) = 0 for any s E J. 

Proof. Since x(su) E MO and x is continuous, there exists a closed neighborhood J of so 
such that x(s) E MO for any s E J. As the sequence (~~,,,)~e,v uniformly converges to x, 
by (1.3), there exists u E N such that 

d = inf{e5(x,,(s))]s E J, m p u} > 0. 

By (2.8) for any m E N, m 1 v, such that E, < d2, we have 

Then, taking the weak limit as m + 00 we get h(s) = 0, for any s E J. 0 

Now we are ready to prove Proposition 2.8. 

Proof of Proposition 2.8. Under our assumptions, by Lemma 2.14, there exists an infinitesi- 
mal anddecreasing sequence (~~)~e,v ofnumbers in IO, l] andacurvex E H2*2([0, 11, Go) 
with support in MO U aMo such that (ii) of Lemma 2.14 holds. Moreover (2.36) holds; we 
shall prove that the multiplier vanishes almost everywhere. Indeed, we know that h(s) = 0 
if x(s) E MO; now let S ~10, 1[ such that x(S) E 8Mo and X(S) exists, then S is a minimum 
point of g(s) = 4(x(s)), so g’(S) = 0, g”(S) > 0. Arguing as in Lemma 2.10, we can 
consider z = (y, t) with y and t as in Proposition 2.2. Letting h(s) = $(z(s)) = @(y(s)), 
we shall call t the minimum point corresponding to S. So, differentiating twice, by (1.4), 
we get: 

0 P h”(t) = &(z(S))[i(t), i(Gl + (VL$(Z(~)), &i(f))(~) 
5 -P.(7)(vL#(z(~)), VL4(Z(f)))(L), (2.37) 

where @ denotes the multiplier corresponding to z. Then by (iii) of Lemma 2.14 we obtain 
&) = 0 almost everywhere. Finally, we get z([O, A]) c M since z is a geodesic with 
energy E joining two points of M and aM is time-convex. 0 

By the results of this section we get, for suitable E, the existence of a geodesic of energy 
E joining p and y. 

Theorem 2.16. Let M = MO x R be a static Lorentzian manifold with smooth time- 
convex boundary such that MO U aMo is complete. Assume that there exist L, q > 0 
such that (1.5) holds and let p = (x0,0) E M and v(s) = (xl, s) E M, s E R be such 
that p @ y(R). Then, for any E E] sup V, O[, there exists a geodesic of energy E joining 
p and y. 

Proof. Since for any E ~]0,1] fe is bounded from below, satisfies the Palai-Smale con- 
dition and its sublevels are complete, ft attains its minimum at a curve x6 E 52 ’ . Moreover 
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it is easy to see that such family satisfies (2.18) for a certain K, so by Proposition 2.8, we 
get the existence of a critical point of f. By Proposition 2.1 and Proposition 2.2 the proof 
is complete. 0 

3. Proof of Theorem 1.4 

At first, we recall some definitions and results, see e.g. [ 131 and [9] 

Definition 3.1. Let X be a topological space. Given a subspace A of X, the category of A 
in X, denoted with catx A, is the minimum number of closed and contractible subsets of X 
covering A; if A is not covered by a finite number of such subsets of X, we set catx A = +co. 

Now we recall a min-max theorem due to Ljusternik and Schnirelmann. 

Theorem 3.2. Let N be a Riemannian manifold and F a C’ -functional on N satisfying 
the Palais-Smale condition. Let us assume that N is complete or that every sublevel of F 
in N is complete. Set for any k E N 

fx = (A c N[catNA 2 k}, 

ck = j$ si!F(x), 
.x 

assume that rk is not empty and ck 

For the following theorem see [.5]. 

(3.1) 

E [w. Then ck is a critical value of F. 

Theorem 3.3. Let N be a non-contractible Riemannian manifold and let x0, xl be two 
points of N. Then there exists a sequence (K,,,),,,~N of compact subsets in 52’(xo, XI, N) 
such that 

,ly, catnl K, = +CQ. 

We have pointed out that the functional f does not satisfy the Palais-Smale condition, 
nevertheless its sublevels have finite category. Indeed, the following proposition, whose 
proof is essentially contained in [9], holds. 

Proposition 3.4. For any c E [w, 

catlt,l f’ < +oo. 

Proof of Theorem 1.4. Let us consider (Km)mE~ as in Theorem 3.3. Then, if we set for 
any m E N 

r, = {A c G”Icat,lA 1. m}, 
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we get r’ # 0. By Theorem 3.2, for any m E N, E ~10, 11, the values 

cc,m = j$ SUP f<(x) 
m XEA 

are well defined and are critical points of fC. Take now (II E R and set 

fol = ]x E Q’lf(x) > a]. 

By Proposition 3.4, there exists m = m(cr) E N such that, for any A E r, 

Anfo, #fl. 

Hence, for any E ~10, 11, we obtain 

By Proposition 2.8, since cx arbitrary, the thesis follows. Indeed we get the existence of 
a sequence (-x,),~N of critical points of f such that (~(x,)),~N diverges, so by using 
the variational principles stated in Section 2, we can consider the associated sequence 

zm = (ym, GA, with 

1 
rp,y (z,) = tm 

( > 
- 
dYrn> 

s KJzX 

for a suitable constant K > 0, from which (1.6) follows. 0 

4. Proof of Theorem 1.7 

Now we study the case in which M is a static Lorentzian manifold with non-smooth 
convex boundary. The variational principles stated in Section 2 still hold. Moreover, con- 
sidering @ as in Definition 1.6, we can penalize the functional f as in the smooth case. Using 
Lemma 2.6 and standard arguments, see also Proposition 2.7, the following proposition can 
be proved. 

Proposition 4.1. Assume that E > sup V. Then, 
(i) for any ??~10, l] andfor any c E Iw the sublevel 

f,” = Ix 6 Q’If&) 5 cl 

is a complete metric subspace in D’; 
(ii) for any ??~10, 11, fC sutisjes the Paluis-Smale condition. 

Let us observe that, arguing as in the proof of Theorem 2.16, we get the existence of a 
family (xC),e)u, 1) of critical points of fc such that (2.18) holds. The following lemma holds. 

Lemma 4.2. Let (x6),,,, be a sequence of criticalpoints of f6 such that (2.18) holds. Then, 
there exists a positive constant 61, independent of E, such that 

@(x,(s)) 2 61 for any s 6 LO, 11. 
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Proof. Arguing by contradiction, assume that there exists a sequence (~+,,)~~,v of critical 
points of fG,, with (E,,&~N decreasing and infinitesimal sequence in IO, 11, such that 

min Wem(~)) + 0 as m-+oc. 
SC[O. 11 

(4.1) 

Following Lemma 2.10 let us consider for any xm, the corresponding zm and set h,(s) = 

~(z,,,(s)) so that 

where K 1 is as in Lemma 2.12. Eventually passing to a subsequence, let 

to = ,:I, rm. 

By (4.1), wegettheexistenceofp > 0 suchthatform largeenoughandr E [rc-p, SO+@]: 

$(zm(r)) -=Z 6, 

where 6 has been introduced in Definition 1.6. Hence, by (v) of Definition 1.6, it results 

0 5 h;(r) = H,$(Zm(T))[im(t), i,(r)1 + (VL4(Zm(T))7 &&(~))(L, 

Arguing as in Lemma 4.1 of [3], we get the proof. 0 

The proof of Theorem 1.7 follows from the one of Theorem 1.4 and the previous lemma. 
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